Abstract
Abstract The chemical expansion of Pr0.1Ce0.9O2–δ (PCO) and CeO2–δ thin films is investigated in the temperature range between 600 °C and 800 °C by laser Doppler vibrometry (LDV). It enables non-contact determination of nanometer scale changes in film thickness at high temperatures. The present study is the first systematic and detailed investigation of chemical expansion of doped and undoped ceria thin films at temperatures above 650 °C. The thin films were deposited on yttria stabilized zirconia substrates (YSZ), operated as an electrochemical oxygen pump, to periodically adjust the oxygen activity in the films, leading to reversible expansion and contraction of the film. This further leads to stresses in the underlying YSZ substrates, accompanied by bending of the overall devices. Film thickness changes and sample bending are found to reach up to 10 and several hundred nanometers, respectively, at excitation frequencies from 0.1 to 10 Hz and applied voltages from 0–0.75 V for PCO and 0–1 V for ceria. At low frequencies, equilibrium conditions are approached. As a consequence maximum thin-film expansion of PCO is expected due to full reduction of the Pr ions. The lower detection limit for displacements is found to be in the subnanometer range. At 800 °C and an excitation frequency of 1 Hz, the LDV shows a remarkable resolution of 0.3 nm which allows, for example, the characterization of materials with small levels of expansion, such as undoped ceria at high oxygen partial pressure. As the correlation between film expansion and sample bending is obtained through this study, a dimensional change of a free body consisting of the same material can be calculated using the high resolution characteristics of this system. A minimum detectable dimensional change of 5 pm is estimated even under challenging high-temperature conditions at 800 °C opening up opportunities to investigate electro-chemo-mechanical phenomena heretofore impossible to investigate. The expansion data are correlated with previous results on the oxygen nonstoichiometry of PCO thin films, and a defect model for bulk ceria solid solutions is adopted to calculate the cation and anion radii changes in the constrained films during chemical expansion. The constrained films exhibit anisotropic volume expansion with displacements perpendicular to the substrate plane nearly double that of bulk samples. The PCO films used here generate high total displacements of several 100 nm’s with high reproducibility. Consequently, PCO films are identified to be a potential core component of high-temperature actuators. They benefit not only from high displacements at temperatures where most piezoelectric materials no longer operate while exhibiting, low voltage operation and low energy consumption.
Highlights
Chemical expansion in oxides is a well-known phenomenon
The chemical expansion of Pr0.1Ce0.9O2–δ (PCO) and CeO2–δ thin films is investigated in the temperature range between 600 °C and 800 °C by laser Doppler vibrometry (LDV)
Multi-stack systems used in solid oxide fuel cells (SOFC) inherently see steep gradients in oxygen partial pressure between the air cathode and fuel anode that lead to corresponding strain gradients that can induce electrode delamination and/or electrolyte or electrode microcracking [1,2,3]
Summary
Chemical expansion in oxides is a well-known phenomenon It originates from the incorporation or removal of oxygen out of the crystal lattice, typically driven by changes in the oxygen partial pressure of the surrounding atmosphere. This might occur either intentionally due to required changes in process parameters or due to chemical reactions associated with, e.g., a combustion process. In addition to thermal and chemical expansion/contraction driven by local environmental conditions at the cathode and anode, solid oxide electrolysis cells (SOEC) suffer from electric field induced local modifications in oxygen vacancy concentration that can lead to even greater chemical expansion effects. Aside from the potential negative impact that chemical expansion can have on mechanical stability of oxides, it can be used advantageously as electric field controlled mechanical actuators, as described in the following
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.