Abstract
We report on an Yb:YAG thin-disk multipass amplifier delivering linearly polarized laser pulses with a pulse duration of 885 fs at an average output power of 400 W and a repetition rate of 200 kHz, corresponding to a peak power of 2.0 GW. This is the highest average output power reported for thin-disk multipass amplifiers delivering pulses with peak powers in excess of 1 GW and it confirms the suitability of thin-disk multipass amplifiers to reach high average output and peak powers at the same time. The amplifier was seeded by a regenerative amplifier delivering laser pulses with a pulse duration of 805 fs and an average power of 40 W. We investigated the influence of self-phase-modulation on the amplified beam and compared it to results with lower peak intensities at a repetition rate of 800 kHz. Furthermore, we report on the amplification of a radially polarized beam leading to 235 W of average output power and 1.2 GW of peak power (at a pulse duration of 888 fs). To the best of our knowledge, this is the highest average output power demonstrated so far for radially polarized GW peak-level laser pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.