Abstract

Thin-walled steel tubular circular columns are widely used as cantilever bridge piers due to their geometric efficiency, aesthetic appearance, and high earthquake resistance. However, local buckling, global buckling, or interaction between both is usually the main reason of significant strength and ductility loss in these columns, which eventually leads to their collapse. This paper investigates the behavior of uniform circular (C) and graded-thickness circular (GC) thin-walled steel tubular columns under constant axial and cyclic lateral loading. The GC column with size and volume of material equivalent to the C column is introduced and analyzed under constant axial and cyclic lateral loading. The analysis carried out using a finite-element model (FEM), which considers both material and geometric nonlinearities. The accuracy of the employed FEM is validated based on the experimental results available in the literature. The results revealed that, significant improvements in strength, ductility, and post-buckling behavior of thin-walled steel columns obtained using the GC column.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.