Abstract

Prewetting transition is studied for the square-well fluid of attractive-well diameter lambda(ff)sigma(ff)=1.5 in the presence of a homogeneous surface modeled by the square-well potential of attractive well from 0.8sigma(ff) to 1.8sigma(ff). We investigate surface phase coexistence of thin-thick film transition using grand-canonical transition matrix Monte Carlo (GC-TMMC) and histogram reweighting techniques. Molecular dynamics (MD) and GC-TMMC are utilized to predict the properties of the fluid for various surface fluid affinities. Occurrences of prewetting transition with the variation of surface affinity are observed for a domain of reduced temperature from T(*)=0.62 to 0.75. We have used MD and GC-TMMC+finite size scaling (FSS) simulations to calculate the boundary tension as a function of temperature as well as surface affinity. Boundary tensions via MD and GC-TMMC+FSS methods are in good agreement. The boundary tension increases with the decrease of wall-fluid affinity. Prewetting critical properties are calculated using rectilinear diameter approach and scaling analysis. We found that critical temperature and density increase with the decrease of wall-fluid affinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.