Abstract

Large-scale preparation of thin strain-relaxed SiGe is achieved by combining ion implantation and ultrahigh vacuum chemical vapor deposition. The resulting materials were analyzed by double crystal X-ray diffraction, micro-Raman spectroscopy, and tapping mode atomic force microscope. Results revealed that 100-nm-thick Si 0.7Ge 0.3 layers with the diameter of 125 mm and full strain relaxation are successfully prepared by pre-modifying the Si substrates using 50 keV Ar + ions. The strain relaxation is also disclosed to change with both ion species and energy. However, post-modification of SiGe by ion implantation will cause serious damage to the crystal structures, and result in the formation of poly-crystal SiGe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.