Abstract

Flexible and stretchable triboelectric nanogenerator (FS-TENG) is an excellent candidate of energy harvesters and tactile sensors as which can collect and induce electrical signals during daily activities and thus for self-powering wearable electronics. Here, ultrathin, soft, skin-integrated self-powering sensors based on FS-TENGs with sets of materials of porous poly(dimethylsiloxane) foam and advanced serpentine silver nanowires are reported to applicate TENG in high-sensitive human–machine interfaces. Systematically, studies of morphology and microstructures in the foam-based FS-TENGs indicate that appropriately designed thin foam triboelectric layers can effectively facile electrostatic induction and significantly enhance the electrical output signals. As a result, an open circuit voltage and a power density as high as 78.7 V and 33.75 W/m2 can be achieved, that is 20 times greater than the pure silicone-based FS-TENGs. Demonstrations of these FS-TENGs with the simple processing routes that associate with 24 sensors integrated on a glove and a large area 8 × 8 tactile sensor array highlight the capabilities of self-powering sensing and energy harvesting. These results offer an effective approach for thin, light wearable self-powering electronics for applications in healthcare monitoring and human-machine interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call