Abstract

Research Article| January 01, 1971 Thin Skin Distension in Tertiary Rocks of Southeastern Nevada R. ERNEST ANDERSON R. ERNEST ANDERSON U. S. Geological Survey, Federal Center, Denver, Colorado 80225 Search for other works by this author on: GSW Google Scholar Author and Article Information R. ERNEST ANDERSON U. S. Geological Survey, Federal Center, Denver, Colorado 80225 Publisher: Geological Society of America Received: 10 Sep 1969 Revision Received: 24 Jun 1970 First Online: 02 Mar 2017 Online ISSN: 1943-2674 Print ISSN: 0016-7606 Copyright © 1971, The Geological Society of America, Inc. Copyright is not claimed on any material prepared by U.S. government employees within the scope of their employment. GSA Bulletin (1971) 82 (1): 43–58. https://doi.org/10.1130/0016-7606(1971)82[43:TSDITR]2.0.CO;2 Article history Received: 10 Sep 1969 Revision Received: 24 Jun 1970 First Online: 02 Mar 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation R. ERNEST ANDERSON; Thin Skin Distension in Tertiary Rocks of Southeastern Nevada. GSA Bulletin 1971;; 82 (1): 43–58. doi: https://doi.org/10.1130/0016-7606(1971)82[43:TSDITR]2.0.CO;2 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGSA Bulletin Search Advanced Search Abstract Volcanic rocks of late Tertiary age, aggregating about 17,000 ft, accumulated on a surface of low relief cut on Precambrian rocks in the Basin and Range province south of Lake Mead, in Nevada and Arizona. They consist mostly of lava and flow breccia of intermediate composition with minor ash-flow tuff, bedded tuff, and lava of rhyolitic composition.The last of three main phases of volcanism was accompanied by widespread epizonal plutonism and intense faulting. All or parts of six similarly but separately fault-deformed structural units are recognized in a 92-sq-mi mapped area. The structural units are highly distended by a system of closely spaced north-to northwest-striking shingling normal faults (many of which are low angle) that displace younger over older rocks in a west to west-southwest direction. Cumulative amounts of distension approximate the breadth of the structural units and are as much as 20,000 ft, whereas cumulative vertical displacements are much less and in some places are minimal. The structural units are floored at or near the present level of exposure by complex low-angle zones of detachment or décollement into which the numerous shingling normal faults merge. Where the units abut along their strike, they are separated by complex zones of transcurrent faults that appear to merge with the detachment structures and thus mark the ultimate limits of the structural units. Displacement on the detachment structures has the same sense as, but in some places is much greater than, that of the cumulative offset on the shingling faults, thus indicating low-angle movement of the structural units as platelike or lobate masses. These relationships indicate remarkably thin-skinned, large-scale, fault-related tectonism of a type which is present in a broad belt south of Lake Mead and in numerous other areas in the Basin and Range province.The best exposed structural units exhibit a serial eastward progression from broad areas of steeply dipping strata, low-angle faults, and deep denudation to gently dipping strata, high-angle faults, and little denudation. Reverse-drag flexing, a volume-compensating mechanism for movement on concave-upward faults, is inferred to have produced the gentle to moderate dips of the strata, whereas the nearly vertical dips in the western parts of the units probably resulted from a combination of reverse-drag flexing and rotation related to uplift. Evidence of compression-related folding is absent.The extreme distension is viewed as a surficial feature of a crustal belt that was subjected to a brief episode of tensional rifting. Rifting at subjacent levels along the belt was compensated for by emplacement of plutons. The surficial rocks were stretched and thinned over the plutons. This content is PDF only. Please click on the PDF icon to access. First Page Preview Close Modal You do not have access to this content, please speak to your institutional administrator if you feel you should have access.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.