Abstract

Three-dimensional tomographic time dependent PIV measurements of high Reynolds number (Re) laboratory turbulence are presented which show the existence of long-lived, highly sheared thin layer eddy structures with thickness of the order of the Taylor microscale and internal fluctuations. Highly sheared layer structures are also observed in direct numerical simulations of homogeneous turbulence at higher values of Re (Ishihara et al., Annu Rev Fluid Mech 41:165–180, 2009). But in the latter simulation, where the fluctuations are more intense, the layer thickness is greater. A rapid distortion model describes the structure and spectra for the velocity fluctuations outside and within ‘significant’ layers; their spectra are similar to the Kolmogorov (C R Acad Sci URSS 30:299–303, 1941) and Obukhov (Dokl Akad Nauk SSSR 32:22–24, 1941) statistical model (KO) for the whole flow. As larger-scale eddy motions are blocked by the shear layers, they distort smaller-scale eddies leading to local zones of down-scale and up-scale transfer of energy. Thence the energy spectrum for high wave number k is \(E_X (k)\sim Bk^{-2p}\). The exponent p depends on the forms of the large eddies. The non-linear interactions between the distorted inhomogeneous eddies produce a steady local structure, which implies that 2p = 5/3 and a flux of energy into the thin-layers balancing the intense dissipation, which is much greater than the mean \(\left \). Thence \(B\sim\left ^{2/3}\) as in KO. Within the thin layers the inward flux energises extended vortices whose thickness and spacing are comparable with the viscous microscale. Although peak values of vorticity and velocity of these vortices greatly exceed those based on the KO scaling, the form of the viscous range spectrum is consistent with their model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call