Abstract

Applied Physics The properties of the human sense of touch, including high sensitivity to differences in temperature, pressure, or surface roughness, are challenging to replicate in robotics because skin materials must be highly conductive, stretchable, and thin. Jung et al. developed a process to assemble nanomaterials as a monolayer that is partially embedded in an ultra-thin elastomer. The process works by depositing a mixed solvent containing nanostructured silver and/or gold, along with elastomer, onto deionized water. This results in a layer of nanoparticles residing at the interface coating with elastomer, which is further densified by the addition of surfactant. The process is scalable, and the resulting elastomer membranes can be transferred to other substrates. Science , abh4357, this issue p. [1022][1] [1]: /lookup/doi/10.1126/science.abh4357

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.