Abstract

The brains of anesthetized 7-month-old male hooded rats were imaged in coronal, sagittal, and horizontal planes at 4.7 T. Images were obtained with a section thickness of 0.6 mm and in-plane pixel size of 0.18-0.20 mm, resulting in finer combined spatial and contrast resolution than in most previously published reports. This allowed detailed anatomic assignment of many brain structures on the basis of comparison with a histologic brain atlas. T1, apparent T2, and water proton density values of gray matter, white matter, and cerebrospinal fluid (CSF) were derived from saturation-recovery and multi-echo measurements. These values were used to calculate expected contrast-to-noise ratios as a function of TR and TE in spin-echo imaging sequences. The optimal simultaneous contrast between gray and white matter and between CSF and gray matter was obtained on images with moderate T2 weighing, with a TR of 3.6 seconds and a TE of 45 msec. The use of thin sections was found to be essential for resolving many fine structures, and the improved sensitivity provided by the high magnetic field strength was crucial for imaging such thin sections at adequate signal-to-noise ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.