Abstract

Thin-section diffusion-weighted imaging (DWI) is known to improve lesion detectability, with long imaging time as a drawback. Parallel imaging (PI) is a technique that takes advantage of spatial sensitivity information inherent in an array of multiple-receiver surface coils to partially replace time-consuming spatial encoding and reduce imaging time. To prospectively evaluate a 3-mm-thin-section DWI technique combined with PI by means of qualitative and quantitative measurements. 30 patients underwent conventional echo-planar (EPI) DWI (5-mm section thickness, 1-mm intersection gap) without parallel imaging, and thin-section EPI-DWI with PI (3-mm section thickness, 0-mm intersection gap) for a b value of 1000 s/mm(2), with an imaging time of 40 and 80 s, respectively. Signal-to-noise ratio (SNR), relative signal intensity (rSI), and apparent diffusion coefficient (ADC) values were measured over a lesion-free cerebral region on both series by two radiologists. A quality score was assigned for each set of images to assess the image quality. When a brain lesion was present, contrast-to-noise ratio (CNR) and corresponding ADC were also measured. Student t-tests were used for statistical analysis. Mean SNR values of the normal brain were 33.61+/-4.35 and 32.98+/-7.19 for conventional and thin-slice DWI (P>0.05), respectively. Relative signal intensities were significantly higher on thin-section DWI (P<0.05). Mean ADCs of the brain obtained by both techniques were comparable (P>0.05). Quality scores and overall lesion CNR were found to be higher in thin-section DWI with parallel imaging. A thin-section technique combined with PI improves rSI, CNR, and image quality without compromising SNR and ADC measurements in an acceptable imaging time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.