Abstract

ABSTRACTWe have extended our recent work [1,2] on buried suicide formation by Ni diffusion into a buried amorphous silicon layer to the case where silicide formation is at lower temperatures on silicon substrates which have been preamorphized. The reaction of metal atoms from a 12 nm Ni film evaporated on top of a 65 nm thick surface amorphous layer formed by 35 keV Si+ ion implantation has been investigated at temperature ≤400 °C. Rutherford Backscattering Spectrometry (RBS) with channeling, cross-sectional transmission electron microscopy (XTEM), X-ray diffraction and four-point-probe measurements were used to determine the structure, interfacial morphology, composition and resistivity of the silicide films. It has been found that an increased rate of silicidation occurs for amorphous silicon with respect to crystalline areas permitting a selective control of the silicon area to be contacted during silicide growth. Vacuum furnace annealing at 360 °C for 8 hours followed by an additional step at 400 °C for one hour produces a continuos NiSi2 layer with a resistivity 44 μΩ cm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.