Abstract
By suitably patterning a metasurface, the phase velocity of surface waves may be manipulated. Here, a low-loss, thin (1/14th of the free-space wavelength), omnidirectional Luneburg lens, based upon a Sievenpiper ``mushroom'' array [Sievenpiper et al., IEEE Trans. Microwave Theory Tech. 47, 2059 (1999)], is fabricated and characterized at microwave frequencies. Surface waves excited using a near-field point source on the perimeter of the lens, exit the opposite side of the lens as planar wave fronts. The electric field of the surface wave is mapped out experimentally and compared to numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.