Abstract

Understanding light–matter interaction lies at the core of our ability to harness physical effects and to translate them into new capabilities realized in modern integrated photonics platforms. Here, we present the design and characterization of optofluidic components in an integrated photonics platform and computationally predict a series of physical effects that rely on thermocapillary-driven interaction between waveguide modes and topography changes of optically thin liquid dielectric film. Our results indicate that this coupling introduces substantial self-induced phase change and transmittance change in a single channel waveguide, transmittance through the Bragg grating waveguide, and nonlocal interaction between adjacent waveguides. We then employ the self-induced effects together with the inherent built-in finite relaxation time of the liquid film, to demonstrate that the light-driven deformation can serve as a reservoir computer capable of performing digital and analog tasks, where the gas–liquid interface operates both as a nonlinear actuator and as an optical memory element.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.