Abstract
This paper describes the use of a thin lead sheet as a tissue compensating filter when a large field that includes the supraclavicular and mediastinal regions is irradiated. The typical midplane depths between supraclavicular and mediastinal regions may vary between 6 to 12 cm. Flattening of the beam entry surface is necessary for dose uniformity; this is achieved with a thin lead sheet compensating filter on the shadow tray of a 4 MV Unit. The shadow tray also contains lead shielding blocks for lung, cervical spinal cord, and larynx. The advantages of using thin lead sheets include easy maneuverability of shaping and sizing for irregular fields, and the small dimensions that are needed. Dose uniformity is verified by measuring optical densities from the film that is taken with the actual tray containing this compensating filter. This compensating filter may be extended to many situations where there are marked dose variations between different locations within the same large radiation field. The electron contamination produced by the scattering medium being placed in the beam is less for lead than for aluminum and wax. This contamination is also insignificant when the scatterer is more than 20 cm. away from the patient's skin surface when Cobalt-60 and 4 NIV units are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology, Biology, Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.