Abstract

In order to break through the bottleneck of narrow effective absorption bandwidth (reflection loss RL ≤ −10 dB) of microwave absorbing materials, herein, we fabricate the metamaterials with carbon fiber (CF) and FeSi alloy (FSA) ribbon metastructure which is distributed in the carbonyl iron powders (CIP)/polyurethane (PU) matrix. The experimental results show that the microwave absorption capacity of the matrix can be significantly enhanced by CF. Compared with the pure matrix, the effective absorption bandwidth increases from 9.4–13.44 GHz to 11–16.8 GHz when the CF is parallel to the electric field vector and the spacing between adjacent CF is 20 mm. Furthermore, the CF and FSA ribbons are arranged in the matrix as an orthogonal arrangement, and the best absorption bandwidth cover 9.76–14.46 GHz when the electric field is parallel and 9.96–14.1GHz when the electric field is vertical when the spacing is 30 mm. The electromagnetic simulation of the metamaterials is calculated, it is proved that the increase of effective absorption bandwidth is due to the strengthening of carbon fiber and its coupling with FSA ribbon. This paper provides a new research path for improving the absorption properties of thin layer microwave absorbing materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.