Abstract

We show that thin mesoscopic read-head sensors with a vertical resolution of are advantageous for detecting magnetic fields from high-density recording media and compare such sensors constructed from narrow-gap semiconductors using the Hall bar and Corbino (giant magnetoresistance) geometries. For signal fields below a critical crossover field , the Hall bar yields a larger output voltage. The maximum output voltage for a thin Hall bar detector is proportional to the maximum drift velocity of the sensor material and to its width. The maximum output voltage and power signal-to-noise ratios are calculated for thin Hall bar read-head sensors constructed from a number of polar semiconductor materials. Read heads of this type are shown to be competitive with metallic spin valve magnetoresistive read heads. We propose a simple, commercially practical procedure for the fabrication of thin Hall bar read-head sensors with high sensitivity and high spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.