Abstract
We present a novel thin head atomic force microscope (AFM) that can be easily integrated with an upright optical microscope (OM). The optical beam detection unit in the AFM used an obliquely incident laser beam onto the cantilever, reducing the AFM head's effective thickness to 7.3mm. That allows an open space above the cantilever probe to accommodate the objective lens up to 0.6 numerical aperture (N.A.) without obstruction. A multi-function digital controller was developed to control the AFM and reserved interfaces to communicate with the OM. To assess the performance of the developed AFM, we first measured the noise level and bandwidths of the AFM system. Then, the imaging quality of the AFM was evaluated by both calibration grids and two-dimensional materials. Finally, the thin head AFM was integrated into a homemade white light interferometer as a demonstration of combined use with an advanced optical system. The experimental results demonstrated that our developed AFM is suitable for integration under upright OM and brings AFM high-resolution advantages to the existing OM system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.