Abstract

Very thin fluorine-doped tin oxide films (60–70 nm) were prepared on glass substrates at low deposition temperatures (275–300°C), these films showed an electrical resistivity of 3.2 ×10-4Ω-cm and a transparency of 88% at 625 nm with the application of a dc electric field on the film surface during growth using a spray pyrolysis deposition technique. In this first study of its kind, the applied electric field during growth by spray pyrolysis resulted in the reduction in the critical thickness and the increases in both the electrical conductivity and transparency of continuous films. The obtained X-ray diffraction (XRD) patterns showed that the films prepared with an electric field were polycrystalline, whereas those prepared without an electric field were amorphous. This method shows potential for producing very thin oxide films at a low deposition temperature with a high growth rate, an enhanced optical quality and an improved electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.