Abstract
Dc-pulsed magnetron sputtering from Ti target in reactive Ar+O2+N2 atmosphere was used to grow stoichiometric TiO2:N and non-stoichiometric TiO2-x:N thin films. X-ray diffraction at glancing incidence, atomic force microscopy AFM, scanning electron microscopy SEM, X-ray photoelectron spectroscopy XPS, and optical spectrophotometry were applied for sample characterization. Measurements of photocurrent versus voltage and wavelength over the ultraviolet uv and visible vis ranges of the light spectrum were performed in order to assess the performance of nitrogen-doped titanium dioxide thin films as photoanodes for hydrogen generation in photoelectrochemical cells, PEC. Undoped TiO2 and TiO2-x films were found to be composed of anatase and rutile mixture with larger anatase crystallites (25-35 nm) while the growth of smaller rutile crystallites (6-10 nm) predominated at higher nitrogen flow rates etaN2 as measured in standard cubic centimeters, sccm. Nitrogen-to-titanium ratio increased from N/Ti = 0.05 at etaN2 = 0.8 sccm for stoichiometric TiO2:N to N/Ti = 0.11 at etaN2 = 0.8 sccm for nonstoichiometric TiO2-x:N thin films. A red-shift in the optical absorbance was observed with an increase in etaN2. Doping with nitrogen improved photoelectrochemical properties over the visible range of the light spectrum in the case of nonstoichiometric samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.