Abstract

Thin films of SnO2 were prepared by the radio frequency (13.56 MHz) sputtering technique in a wide range of oxygen/argon concentrations within the sputtering system. The films were analyzed by means of transmission and scanning electron microscopy, x-ray diffractometry and Auger electron spectroscopy. The results showed the films to be polycrystalline with an average grain size of 400 A. Room temperature resistances of as-sputtered films showed a strong dependence on the oxygen concentration in the sputtering environment. Electrical conductivity studies of these films in oxygen and in hydrogen revealed the fundamental charge transfer mechanisms in the observed gas sensitivity of the material to be due to an interaction of the hydrogen with chemisorbed oxygen ions on the semiconductor surface. Finally, a means of providing selectivity between H2S and H2 responses was studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.