Abstract

The activating role of different polymer thin films coated over polystyrene support on the Synechococcus sp. biofilm growth was examined concurrently by measuring biofilm florescence using a dye and by measuring cell density in the isolated biofilm. Compared to blank (no coating), the increase in biofilm formation (%) on silk, chitosan, silk-chitosan (3:2) blend, polyaniline, osmium, and Nafion films were 27.73 (31.16), 21.55 (23.74), 37.21 (38.34), 5.35 (8.96), 6.70 (6.55) and (nil), respectively with corresponding cell density (%) shown in the parentheses. This trend of biofilm formation on the films did not significantly vary for Escherichia coli and Lactobacillus plantarum strains. The films of 20 residues long each of glycine-alanine repeat peptide, which mimics a silk fibroin motif, and a hydrophobic glycine-valine repeat peptide, increased the biofilm growth by 13.53 % and 26.08 %, respectively. Silk and blend films showed highest adhesion unit (0.48–0.49), adhesion rate ((4.2–4.8)×10−6, m/s) and Gibbs energy of adhesion (−8.5 to −8.6kT) with Synechococcus sp. The results confirmed interplay of electrostatic and hydrophobic interaction between cell-surface and polymer films for promoting rapid biofilm growth. This study established that the thin films of silk and the blend (3:2) promote rapid biofilm growth for all the tested microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.