Abstract
Thin films of chalcopyrite CuFeS2 were deposited on glass substrates by flash evaporation. The resulting film structure was analyzed by scanning electron microscopy (SEM) combined with energy dispersive x-ray spectroscopy (EDS). It was detected that the thin films consist of separate grains of almost equal areas of about (200–400) μm2. The thin films of chalcopyrite CuFeS2 have chemical composition with an atomic content of Cu, Fe, and S of 25.22 at.%, 23.38 at.%, and 51.40 at.% and atomic ratios of Cu/Fe and S/(Cu + Fe) equal to 1.08 and 1.06, respectively, which slightly differ from the theoretical values equal to 1 for both atomic ratios. A small inclusion of the second phase with chemical composition with the atomic content of Cu, Fe, and S of 29.24 at.%, 25.24 at.%, and 45.52 at.% was detected and can be attributed to talnakhite Cu9Fe8S16. The observed cracking of the thin films is explained by the separation of the additional phase with the structure of chalcocite Cu2S, which occurs during cooling of the thin films.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.