Abstract

Thin films of the extracellular matrix protein, collagen, were prepared by adsorbing native or heat-denatured type I collagen onto hexadecanethiol self-assembled monolayers. The resulting films were characterized by atomic force microscopy, ellipsometry, and light microscopy. Denatured collagen formed a topographically smooth ∼3.6 nm thick film, consistent with an adsorbed protein monolayer. In contrast, the native collagen thin film consisted of supramolecular collagen fibrils. The density of the large fibrils could be varied by changing the native collagen concentration in the solution from which the films were prepared. The biomimetic nature of the thin collagen films was partially assessed by examining their effects on vascular smooth muscle cells. Automated quantitative analysis indicated that the morphology of smooth muscle cells on the thin films was dependent on whether the collagen was heat-denatured or was in its native fibrillar form. The area of cells on denatured collagen films was significan...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call