Abstract

Thin films of BiOCl, BiOBr, and BiOI (BiOX) were deposited by thermal evaporation for their potential application in the decontamination of water and air through their photocatalytic activity, which was compared among the three. The BiOX thin films were subjected to characterization through X-ray diffraction, high-resolution transmission electron microscopy, and scanning electron microscopy. Additionally, the optical properties were determined from the diffuse reflectance spectrum obtained with a spectrophotometer. To assess the efficacy of the semiconductor films in water decontamination, the evolution of rhodamine B discoloration and its mineralization was monitored by measuring total organic carbon. The decontaminating activity in the air was evaluated in a gas reactor, measuring the conversion of NOx-type gases. The results demonstrated that the thin films of the three oxides exhibited decontaminating photocatalytic activity in both water and air. However, notable distinctions were observed in the photocatalytic activities of the three bismuth oxyhalides in water, while in air, they exhibited similarities. In aqueous environments, the mineralization percentages exhibited notable variation after 96 h, with the BiOBr film displaying a value of 9.2%/mg and the BiOCl film a value of 3.9%/mg. In contrast, the NO conversion rate in the air was approximately 0.6%/mg for the three oxyhalide films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.