Abstract
Reservoir computing is a powerful neural network-based computing paradigm for spatiotemporal signal processing. Recently, physical reservoirs have been explored based on various electronic devices with outstanding efficiency. However, the inflexible temporal dynamics of these reservoirs have posed fundamental restrictions in processing spatiotemporal signals with various timescales. Here, we fabricated thin-film transistors with controllable temporal dynamics, which can be easily tuned with electrical operation signals and showed excellent cycle-to-cycle uniformity. Based on this, we constructed a temporal adaptive reservoir capable of extracting temporal information of multiple timescales, thereby achieving improved accuracy in the human-activity-recognition task. Moreover, by leveraging the former computing output to modify the hyperparameters, we constructed a closed-loop architecture that equips the reservoir computing system with temporal self-adaptability according to the current input. The adaptability is demonstrated by accurate real-time recognition of objects moving at diverse speed levels. This work provides an approach for reservoir computing systems to achieve real-time processing of spatiotemporal signals with compound temporal characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.