Abstract

We have modified the microscratch test to create a near plane strain loading condition. In the Microwedge Scratch Test (MWST), a wedge-shaped diamond indenter tip is drawn along a fine line (i.e., narrow strip of film), while simultaneously being driven into the line. We compare microwedge scratching of zone 1 (voided grain boundaries) and zone T (metallurgical grain boundaries) thin film specimens of sputtered tungsten on thermally grown SiO2. Symptomatic of its weak grain boundaries, the zone 1 film displays three separate crack systems. Because of its superior grain boundary strength, the zone T film displayed only one of these—an interfacial crack system. By correlating fracture phenomena to signature events in the load-displacement curve, we develop governing equations for propagating interfacial cracks, including expressions for strain energy release rate, bending strain, and mode mixity. Grain boundary fracture causes zone 1 films to spall before a stable crack is formed. Zone T films survive the bending strains, and hence adhesions may be inferred from stable crack growth mechanics. We conclude by contrasting and comparing experimental results for plane strain indentation versus plane strain scratching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.