Abstract

ABSTRACTAccurately predicting fission gas releases (FGR) from high burn-up fuels during off-normal conditions, such as a loss-of-coolant accident (LOCA), is an important, major challenge. A significant step forward would be to identify and assess the basic mechanisms causing this FGR. A helpful way of better understanding these basic mechanisms is to separate these effects and to perform irradiations on materials simulating the nuclear fuel. Mesoporous or dense CeO2 and UO2 samples (with thin film geometry) were selected for these studies as materials representative of irradiated fuels. A basic mechanism to obtain a better understanding of FGR is described and a new methodology using thin film samples is developed to test the validity of this mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.