Abstract

Ferroelectric PZT-based perovskite thin films are widely studied for fabrication of compact piezoelectric energy harvesting (EH) power microelectromechanical systems (MEMS) due to their large piezoelectric coefficients. Output energy of the piezoelectric EH power MEMS is chiefly governed by their energy conversion rate, κ2 and/or (e2/e), where e and e denote their piezoelectric coefficient and dielectric constant. The values of (e2/e) are considered as figures of merit (FOM) for the piezoelectric EH power MEMS. At present nonferroelectric AlN thin films are considered as a candidate for a better piezoelectric EH power MEMS due to their high FOM values. These PZT-based thin films are mostly polycrystalline thin films of binary perovskite compounds, Pb(Zr, Ti)O3 (PZT). We have proposed single crystal thin films of PZT-based ternary perovskite compounds, Pb(Mn,Nb)O3-PZT (PMnN-PZT), instead of the binary perovskite PZT. The single crystal PMnN-PZT thin films have been successively fabricated by rf-magnetron sputtering. It is found that the FOM values of single c-domain/single crystal PMnN-PZT thin films are one order of magnitude higher than those of AlN thin films. This suggests output powers of the PMnN-PZT thin-film EH power MEMS are one order of magnitude higher than those of the AlN thin-film EH power MEMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.