Abstract
Some preliminary studies to realize a carbonaceous electronic circuit were carried out using the liquid-dispersible thin-film particles of graphite oxide and their conductive reduction product. (1) The affinity of insulator substrates (diamond, silicon carbide, silicon, sapphire and three kinds of glass) for the particles was improved by heating and immersion in water. (2) The electric conductivity was measured for a wide wiring pattern formed by a large number of the reduced thin-film particles mounted on the substrate, and the value was 1600 S/m after heating at 500 °C. (3) To make the prototype of a narrow wiring or a micro device, the internal micro fabrication (position-selective removal) of a single particle was attempted using focused ion beam. Many kinds of patterns which contain narrow wiring having a width of 200 nm etc. were formed in the reduced thin-film particle having about 10 nm thickness. (4) The simple model calculation of anisotropic conductivity was executed for thin graphite which has a small number of layers and finite size. In the case of the fine graphitic carbonaceous devices and circuits, much attention must be paid to their sizes in all directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.