Abstract

Antireflection filters based on multilayer stacks of dielectric and polysilicon films on monocrystalline silicon combined with charge collection in different (poly)Si layers can be used to realize sensors with a programmable spectral response controlled by weighted summing of the photocurrents detected in the polysilicon and the substrate. Thus, employing both interference and selective absorption of light yields increased photoelectric efficiency and improved flexibility of spectral control and enables on-chip integration of the detector(s) with the signal conditioning and processing circuits. The potential of thin-film color sensors has been evaluated for this purpose. However, for practical implementation of such structures the problems associated with the realization of reliable photodetectors in polysilicon must also be considered. Phosphorus passivation of the grain-boundary states has been employed to yield polysilicon photodiodes with improved electrical characteristics and reliable light and color detection. We present the design methods of thin-film color sensors employing silicon-compatible materials only. The measurement results of a fabricated structure fully demonstrate that such sensors can be realized with good spectral selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call