Abstract

Thin films of transition metals oxides are studied and comparison is made for two types of mixed precursors, first containing only hexacarbonyls, and second containing tungsten hexacarbonyl and vanadyl acetylacetonate (Vanadium<remove-image> (III) acetylacetonate). The best electrochromic material is WO3, although when deposited by Atmospheric Pressure Chemical Vapour Deposition (APCVD) films of WO3 grow very slowly. In production stage, the growth-rate is very important factor for assuring a flow-through process. Our previous investigations showed that addition of a small fraction of lower temperature precursor such as Mo(CO)6, or V(CO)6, to the basic precursor of W(CO)6 result in higher growth rate of films. Our recent studies on mixed WxV1-xO3 showed excellent substrate coverage and high growth-rate. V(CO)6 is a lower thermally stable precursor that allows the first nuclei-islands to be formed on the hot substrates which further facilitate the tungsten oxide film deposition. However V(CO)6 is much too expensive for large-scale production, thus we adopted another compound as precursor - vanadium acetylacetonate, expecting eventual growth-rate increase. The paper describes optical properties of films of vanadium oxide grown in result of utilizing the acetylacetonate. Besides, the paper describes our attempt to deposit mixed films of tungsten/vanadium using a mixed precursor of vanadyl acetylacetonate and tungsten hexacarbonyl. To our knowledge this is a new mixed precursor based on largely used single precursors namely W(CO)6 and Vanadium acetylacetonate. Efforts were needed to adjust the mixed precursor ratio, keeping in mind the vapour pressures of the two chemicals at the deposition temperatures used. The paper presents the results for the visible transmittance and the film material modulation properties, studied by FTIR and Raman spectra. The dependence of the films optical behavior on APCVD process parameters, substrate temperatures, vapour source temperature and post deposition annealing is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.