Abstract

Described are the preparation and functional characterization of nanocrystalline and/or amorphous thin films comprising of neutral “molecular squares” of the form [Re(CO)3(Cl)(μ-L)]4 (L = difunctional imine or azine ligand). The films are strongly adherent, stable in aqueous media, and characterized by comparatively few pinhole defects. Electrochemical transport experiments show that the materials are exceptionally porous with respect to sufficiently small solution-phase permeants but blocking toward larger permeants. Related thin-film experiments based on monometallic “corner” materials indicate efficient exclusion of all candidate permeant molecules evaluated. For the title materials, these experiments, together with additional electrochemical probe experiments, indicate that (1) membranelike permeation via pores or tunnels of about nanometer diameter is the primary mode of transport of molecular and ionic species through thin films and (2) the transport-relevant pore or tunnel diameter is defined by th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call