Abstract

AbstractCentrifugal and shear forces are produced when solids or liquids rotate. Rotary systems and devices that use these forces, such as dynamic thin‐film flow technology, are evolving continuously, improve material structure‐property relationships at the nanoscale, representing a rapidly thriving and expanding field of research high with green chemistry metrics, consolidated at the inception of science. The vortex fluidic device (VFD) provides many advantages over conventional batch processing, with fluidic waves causing high shear and producing large surface areas for micro‐mixing as well as rapid mass and heat transfer, enabling reactions beyond diffusion control. Combining these abilities allows for a green and innovative approach to altering materials for various research and industry applications by controlling small‐scale flows and regulating molecular and macromolecular chemical reactivity, self‐organization phenomena, and the synthesis of novel materials. This review highlights the aptitude of the VFD as clean technology, with an increase in efficiency for a diversity of top‐down, bottom‐up, and novel material transformations which benefit from effective vortex‐based processing to control material structure‐property relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.