Abstract

Nanofiltration has exhibited broad application prospects in the field of precise separation attributed to its unique sieving performance for ions and small molecules, high permeation flux and low energy consumption. However, it remains a great challenge for current nanofiltration membranes (NFMs) to improve the permeability while maintaining the high rejection for divalent (or multivalent) ions. In this work, we design and fabricate a novel thin-film composite (TFC) nanofiltration membrane, for which an electrospun polyacrylonitrile nanofiber membrane is adopted as the support after modified by a zirconia mineral layer via surface biomimetic mineralization method, and then an ultrathin selective layer of polyamide (PA) with wrinkled structure is constructed on it via interfacial polymerization. The hydrophilic mineralized nanofiber surface can help to decrease the thickness of the PA layer significantly. Meanwhile, the abundant zirconia particles acting as templates will generate a wrinkled structure for PA layer, providing an improved effective filtration area. Therefore, the resultant NFMs exhibit a high water flux of 38.2 L m−2 h−1 (under 4 bar) accompanied with excellent rejection rate for divalent anions (e.g. 97.6% for SO42−) and cations (e.g. 92.4% for Mg2+). This study could pave an avenue to develop highly efficient NFMs for comprehensive separation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.