Abstract

The present paper is aimed at the modeling of a continuous film breakup into individual rivulets, leading to the formation of dry patches on the substrate surface. Following an approach already successfully applied to the prediction of still/moving droplet configuration, we attempt to model the details of a single possible film breakup and its evolution over a two-dimensional domain via a phenomenological model. Based on the momentum, energy and mass flow balance of the capillary ridge on the border of the dry patch, the proposed model is validated against both numerical prediction and experimental results from the open literature. Such a detailed prediction may not be practical for the simulation of complex geometrical configuration (which may include, as an example, multiple breakups on the surface of a the whole aircraft subject to icing condition), but can be used to look for statistically significant parameters that can be used to provide proper boundary conditions for fully 3D CFD computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.