Abstract
AbstractThe main question addressed in this study is whether particles with relativistic energy can be injected directly into the inner magnetosphere by very near‐Earth reconnection during magnetic storms. We study a sequence of events observed in the solar wind, in the magnetotail, at geosynchronous orbit (GEO), in the inner magnetosphere, and in the ionosphere during the main phase of a geomagnetic storm on 16 June 2012–17 June 2012. The storm was caused by a magnetic cloud with a high dynamic pressure and a strong southward IMF lasting about 10 hr. These conditions caused an extreme compression of the magnetosphere (SymH reached ∼150 nT) and an enhancement of the lobe magnetic field strength to ∼90 nT at R ∼ 10 Earth radii (RE). We focus on an hour‐long interval between 1050 and 1150 UT on 17 June 2012 when the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites were at apogee at geocentric distances R ≈ 12 RE near midnight. At that time a thin current sheet formed between cis‐GEO distances and THEMIS. This thin current sheet reconnected between GEO and THEMIS. A strong lobe magnetic field enabled ion and electron energization to energies E ≈ 600 keV. Fluxes of high energy (up to relativistic) particles at GEO increased within ≈20 s after reconnection onset detected by THEMIS. Fluxes of relativistic electrons at L ∼ 4 in the morning sector increased within about 600 s after reconnection onset. We interpret these observations as signatures of direct injection of reconnected particles into the inner magnetosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.