Abstract

We demonstrate a thin-core fiber (TCF)-based hybrid modal interferometer for high-sensitivity refractive index (RI) sensing. It mainly consists of a tapered TCF with an air bubble fabricated by the arc discharge technique using a fusion splicer machine. Due to mode mismatch and the tapering of the TCF, high-order cladding modes are excited, which can be used for high-sensitivity index sensing. The selected two interference dips of the sensor can obtain the index sensitivities of 370.37 and −72.22 dB/RIU in the RI range from 1.333 to 1.3799. Using the differential intensity demodulation method, a total index sensitivity as high as 442.59 dB/RIU can be achieved. Featured with high sensitivity, linear response, small size, ease of fabrication, and low cost, the proposed sensor may have various applications in biochemical sensing field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.