Abstract

<p><span><span>We show that thin cirrus clouds, whose particle radius is greater than 50 μm and number concentration is less than 10 /L, extinct supercooled water clouds (SC) by use of the data of the space-borne lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the space-borne 94-GHz cloud profiling radar (CPR). We call the cirrus Large-and-Sparse-particle Clouds (LSC). </span></span></p><p><span><span>The space-borne imagers, such as Moderate Resolution Imaging Spectroradiometer (MODIS), cannot measure LSC; hence, LSC had been difficult to be found by satellites. CALIOP is less sensitive to LSC than CPR though CALIOP is usually more sensitive to clouds than CPR because of the cloud particle size distribution of LSC.</span></span></p><p><span><span>The most significant feature of LSC is that LSC extinct SC and cloud particles of SC are changed into pristine ice particles. This is because (1) SC and LSC do not tend to coexist while horizontally oriented ice particle clouds (2D) and LSC tend to coexist, (2) the cloud top height of LSC is higher than that of SC, and (3) the terminal velocity of LSC particles is about 1 km/h.</span></span></p><p><span><span>Because 10-20% of clouds in the Arctic are LSC, LSC would indirectly impact on radiative forcing in the Arctics.</span></span></p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.