Abstract

Casein films were successfully prepared with the spin-coating technique of aqueous casein solutions on base-treated glass surfaces. The film structure is investigated in real space with optical microscopy and atomic force microscopy and for the first time in reciprocal space with grazing incidence small-angle X-ray scattering (GISAXS). The size of the substructures detected in the film increases with pH from 170 nm (pH 5.1) up to 490 nm (pH 9.4). Dynamic light scattering experiments reveal that the average diameters of casein micelles in solution exhibit the same quantitative increase. This result suggests that the substructures detected in the bulklike films with GISAXS reflect intact casein micelles. However, with thin homogeneous casein films, the micelle size diminishes with decreasing film thickness. This indicates that the moderate pressures introduced by spin-coating force the micelles to rearrange into a more compact structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call