Abstract

Anodic aluminum oxide (AAO) membranes are chemically and thermally stable and inert, and can be produced with wide variety of pore size distribution. We report thin alumina nanoporous membranes (0.7–1 μm thickness) with narrow pore size distribution (20–30 nm diameter) obtained by anodizing aluminum films that were deposited on silicon substrates for a biomolecule separation platform. We demonstrate the electrostatic sieving effect for separation of proteins with similar molecular weights with the thin nanoporous anodic aluminum oxide membranes. Without separate modification of the membrane surface, we have achieved high throughput (>10 −8 M cm −2 s −1) and high selectivity (>42) for separation of bovine serum albumin (BSA) and bovine hemoglobin (BHb) at pH = 4.7, the isoelectric point of BSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.