Abstract

We consider the basic physical properties of matter forming a thin accretion disc in the static and spherically symmetric space-time metric of the vacuum f(R) modified gravity models. The Lagrangian of the generalized gravity theory is also obtained in a parametric form, and the conditions of the viability of the model are also discussed. The exact Schwarzschild-type solution of the gravitational field equations in the f(R) gravity contains a linearly increasing term, as well as a logarithmic correction, as compared to the standard Schwarzschild solution of general relativity, and it depends on four arbitrary integration constants. The energy flux and the emission spectrum from the accretion disk around the f(R) gravity black holes are obtained, and they are compared to the general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing modified gravity models by using astrophysical observations of the emission spectra from accretion disks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.