Abstract

The possibility of observationally discriminating between various types of neutron stars, described by different equations of state of the nuclear matter, as well as differentiating neutron stars from other types of exotic objects, like, for example, quark stars, is one of the fundamental problems in contemporary astrophysics. We consider and investigate carefully the possibility that different types of rapidly rotating neutron stars, as well as other type of compact general relativistic objects, can be differentiated from the study of the emission properties of the accretion disks around them. We obtain the energy flux, the temperature distribution and the emission spectrum from the accretion disks around several classes of rapidly rotating neutron stars, described by different equations of state of the neutron matter, and for quark stars, described by the MIT bag model equation of state and in the CFL (Color-Flavor-Locked) phase, respectively. Particular signatures appear in the electromagnetic spectrum, thus leading to the possibility of directly testing the equation of state of the dense matter by using astrophysical observations of the emission spectra from accretion disks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.