Abstract

The constitutive parameters measurement of thin solid and liquid materials by transmission-reflection methods generally suffers from a) the requirement of the transformation of measured scattering parameters from the reference plane to the end surfaces of the material (measurement plane) and b) inaccurate knowledge on the length of the material, if the material does not fill the entire measurement cell (a waveguide or coaxial-line section). In this research paper, a microwave waveguide method for constitutive parameters determination of these materials is proposed to simultaneously eliminate these problems. There are three main advantages of the proposed method as: a) it explicitly determines the constitutive parameters from measured S-parameters; b) it does not require the knowledge about sample length since it directly measures it as a byproduct of the method; and c) it offers a self-checking feature to trace the performance and accurateness of measurements. This feature does not depend on the constitutive parameters of the sample. We measured the complex permittivity of some thin solid and liquid test samples for validation of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.