Abstract

We performed molecular dynamics simulations to study the effect of the layer thickness on the shear localization in Cu/Nb metallic nanolayered composites (MNCs). Our simulation results achieve good agreement with experimental results that the inverse size effect in the strength occurs in samples with layer thickness below 2.0 nm. The strain softening observed in those samples was triggered by the shear localization. The quantitative analysis revealed that the unsymmetrical dislocation transmission across the interface induces the shear localization and promotes the shear band formation in Cu/Nb MNCs. The plastic strain mainly comes from the interface sliding within the shear band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.