Abstract
In the work presented in this paper a real time holographic interferometry technique is developed to measure instantaneously and nonintrusively the thickness distribution of a liquid sheet formed by the impingement of two liquid jets. The experimental results are compared with earlier largely unverified analytical predictions. It is shown that the assumption that the sheet thickness is inversely proportional to the radial distance from the impingement point is in principle good. The dependence of the theoretically obtained proportionality constant on the azimuthal angle, however, while exhibiting the same trend it also shows some quantitative differences. Reasons are given in the context of the work. In addition, a weak effect of the jet velocity on the proportionality constant is found to exist. In the theories no such effect was modeled. Finally, comparisons between theoretical and experimental isothickness contours show differences. Overall, there appears to be a justification for improved theoretical studies including effects such as that of gravitation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.