Abstract
Landfast ice plays an important role in atmosphere‒ocean interactions and ecosystems in the near coast area of Antarctica. Understanding the characteristics and variations of landfast ice is crucial to the study of climates and field activities in Antarctic. In this study, a high-resolution thermodynamic snow-ice (HIGHTSI) model was applied to simulate the seasonal changes of landfast ice along the Mawson Coast, East Antarctica, through ERA-Interim reanalysis data. Four ocean heat-flux (Fw) values (10, 15, 20 and 25 W m−2) were used in sensitivity experiments. The results showed that it is reasonable to simulate landfast ice using the HIGHTSI model, and the simulation of landfast ice thickness matched best well with field measurements when Fw was 20 W m−2. Then, 2-D distributions of landfast ice from 2006 to 2018 were modeled by HIGHTSI with 2-D ERA-Interim reanalysis data in a 0.125° × 0.125° cell grid as external forcing. The results showed that fast ice was thicker along the coast and thinner near open water, and usually reaches its maximal thickness in October, varying from 1.2 to 2.0 m through the study area. There was no statistical trend for the thickness during the study period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.