Abstract

The acoustic guided wave propagation for plate thickness measurement is generally treated in free space to simplify the formal approach. In this paper, propagation in a closed environment is treated by dealing with plates of finite dimensions and arbitrary geometries and linear boundary conditions. The present approach considers the plate Green's function to be composed of two terms. The first term corresponds to the Green's function of an infinite plate. The second term corresponds to a correction term which, in addition to the first term, satisfies all equations. Assuming the boundary conditions to be linear, it is found that the acoustic wave generated by a point source is proportional to that of a circular array of sources centered on it. By measuring the ratio between the two signals, either the plate velocity or plate thickness can be determined. This new method has been successfully applied to isotropic and anisotropic homogeneous plates of different geometries, on inhomogeneous plates, and also in a passive mode, without an active transmitter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call