Abstract

An optimized thickness of a transplantable auricular silicone scaffold was researched. The original image data were acquired from CT scans, and reverse modeling technology was used to build a digital 3D model of an auricle. The transplant process was simulated in ANSYS Workbench by finite element analysis (FEA), solid scaffolds were manufactured based on the FEA results, and the transplantable artificial auricle was finally obtained with an optimized thickness, as well as sufficient intensity and hardness. This paper provides a reference for clinical transplant surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.