Abstract

Although the preparation of DNA thin films with well-defined thicknesses controlled by simple physical parameters is crucial for constructing efficient, stable, and reliable DNA-based optoelectronic devices and sensors, it has not been comprehensively studied yet. Here, we construct DNA and surfactant-modified DNA thin films by drop-casting and spin-coating techniques. The DNA thin films formed with different control parameters, such as drop-volume and spin-speed at given DNA concentrations, exhibit characteristic thickness, surface roughness, surface potential, and absorbance, which are measured by a field emission scanning electron microscope, a surface profilometer, an ellipsometer, an atomic force microscope, a Kelvin probe force microscope, and an UV–visible spectroscope. From the observations, we realized that thickness significantly affects the physical properties of DNA thin films. This comprehensive study of thickness-dependent characteristics of DNA and surfactant-modified DNA thin films provides insight into the choice of fabrication techniques in order for the DNA thin films to have desired physical characteristics in further applications, such as optoelectronic devices and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.